Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release

نویسندگان

  • Charlotte J. Mable
  • Rebecca R. Gibson
  • Sylvain Prevost
  • Beulah E. McKenzie
  • Oleksandr O. Mykhaylyk
  • Steven P. Armes
چکیده

Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm(-1). A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0-10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles

Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles ca...

متن کامل

Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

Dynamic covalent chemistry is exploited to drive morphological order-order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-as...

متن کامل

Triggered Release from Thermoresponsive Polymersomes with Superparamagnetic Membranes

Magnetic polymersomes were prepared by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-isopropylacrylamide) with monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPION). The specifically designed thermoresponsive block copolymer allowed for efficient incorporation of the hydrophobic nanoparticles in the membrane core and encapsulation of the water soluble ...

متن کامل

Preparation of Aggregation Stable Block Copolymer Nanoparticles for Simultaneous Drug Delivery and Imaging

We present a novel process for the simultaneous encapsulation of active pharmaceutical compounds (βcarotene, α-tocopherol succinate) and imaging agents (dodecanethiol gold nanoparticles and 7-amino-4-methyl coumarin) based on diblock copolymer self assembly in the diffusion limited regime. Uniform particles with tunable sizes from 50-300 nm and long term stability are prepared at high concentra...

متن کامل

pH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly

Polymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015